建立了基于机器学习和统计学习的P300信号识别模型.由于通道数过多,建立基于组稀疏贝叶斯逻辑回归的通道自动选择模型来提取最佳通道组合;然后针对数据标签成本过高的问题,提出了改进的基于支持向量机的半监督分类模型.最后针对5个健康成年被试的P300脑机接口实验数据进行实证分析.在实证分析中首先对数据进行预处理、特征提取和整合、欠采样等数据分析工作,然后在通道自动选择模型选择出的最优通道组合的前提下,识别并分类预测了P300信号.该识别过程是康复工程发展的重要辅助工具.