摘要
本发明公开了一种基于卷积循环神经网络的音乐音频分类方法,所述方法包括以下步骤:S1、对音乐的音频进行标注得到音乐标注数据集;S2、对数据集采用音乐数据增强方法对训练数据进行增强;S3、将数据集中音乐的音频信号进行分帧与加窗,通过短时傅里叶变换和梅尔尺度变换得到音频对应的梅尔声谱;S4、构建基于卷积循环神经网络的音乐音频分类模型;S5、将训练数据的梅尔声谱输入到基于卷积循环神经网络的音乐音频分类模型进行迭代训练;S6、输入音乐对应的梅尔声谱,对音乐的标签进行预测。本发明所述的方法能提高网络对声谱特征的提取能力,得到更好的音乐整体特征表示,从而提高音乐音频分类的准确性。
- 单位