摘要
传统目标跟踪算法首先通过采样信号估计时延或多普勒等参数,然后利用这些参数构成的跟踪方程获得目标运动轨迹,这种两步跟踪模式存在位置信息损失、误差累积等问题,跟踪精度仍有待提高。针对此问题,提出一种利用数据域采样信号,基于时延和多普勒信息的直接跟踪算法。该算法利用多个观测站的接收信号,首先建立一个基于连续时间和多普勒信息的直接跟踪模型;然后基于进化粒子滤波算法,对所提跟踪模型进行迭代求解,提高算法计算效率,实现对运动目标的快速高精度跟踪;最后,针对所提模型,推导了目标直接跟踪的克拉美罗下界(Cramer-Rao lower bound,CRLB)递归求解方法,给出了算法的跟踪误差下限。仿真实验表明,与现有跟踪算法相比,所提算法跟踪精度更高,收敛速度更快,尤其在低信噪比条件下更能逼近CRLB。
-
单位信息工程大学