摘要

心血管疾病是一种严重危害公众健康的重大疾病。与其他心血管疾病相比,冠心病是导致死亡的最主要原因,精确的冠状动脉分割对冠心病的治疗有重要意义。目前,深度学习已经广泛应用于医学影像领域,然而,像冠状动脉这样的小物体的分割仍然是一大挑战。针对冠状动脉精确分割的需求,该研究提出了一种融合二维和三维卷积网络的方案,利用骨架作为桥梁,结合二维和三维卷积网络,扩大了卷积网络的信息接受域。与其他深度学习方法相比,该方法在敏感度、Dice系数、ROC曲线下方的面积、豪斯多夫距离上均有一定程度的提升,且可以检测其他方法无法识别的冠状动脉,一定程度上解决了血管断连和血管缺失等问题。

全文