摘要
采用波动散布熵只能提取故障振动信号的单一尺度特征,而多尺度反向波动散布熵(MRFDE)无法分析信号的高频特性信息,导致提取的故障特征不够全面,进而影响旋转机械故障识别准确率,针对这一问题,提出了一种基于层次反向波动散布熵(HRFDE)和引力搜索算法优化概率神经网络(GSA-PNN)的旋转机械故障诊断模型(方法)。首先,利用层次分割处理代替MRFDE中的粗粒化处理,提出了可以同时提取信号中低频段信息和高频段信息的HRFDE方法,并用于全面表征旋转机械故障特征中的低频和高频信息,从而生成了故障特征样本;然后,采用引力搜索算法(GSA)方法对概率神经网络(PNN)分类器的平滑因子进行了快速优化,建立了GSA-PNN多故障分类模型,对旋转机械的故障类型进行了识别和检测;最后,利用滚动轴承和齿轮箱两种典型的故障数据集,对基于HRFDE方法和GSA-PNN分类器的故障诊断方法的有效性和稳定性进行了实验分析,并将其与现有基于MRFDE、多尺度波动散布熵(MFDE)和层次散布熵(HDE)的故障特征提取方法进行了对比分析。研究结果表明:基于HRFDE方法和GSA-PNN分类器的故障诊断方法可以精准地识别旋转机械的不同故障类型,对两种数据集的识别准确率均达到了98%;而在牺牲部分故障识别效率的基础上,能够获得优于其他对比方法的故障识别准确率,其具有更好的综合性能。
-
单位东南大学; 吉林铁道职业技术学院