近年来涌现了许多把深度强化学习应用到股票交易策略的研究。深度强化学习通常依赖于马尔可夫决策过程建模,但是股票市场中交易策略的制定需要考虑历史交易数据中包含的信息。因此,本文通过部分可观察马尔可夫决策过程对股票市场建模,并采用长短期记忆网络和优势演员评论家算法来构建股票交易策略。通过在道琼斯工业平均指数成份股数据集上进行实验,实验结果表明本文所设计的股票交易策略构建方法可以挖掘隐藏在历史数据中的有效信息,获得稳定且有效的交易策略。