通过神经网络加速实现大型黏弹性计算

作者:P.M.R.DeVries; T.B.Thompson; B.J.Meade; 李帛珊; 唐丽华; 孙燕萍
来源:世界地震译丛, 2019, 50(05): 433-441.
DOI:10.16738/j.cnki.issn.1003-3238.201905003

摘要

认识重复地震周期活动的影响,其最大的挑战之一是大尺度的黏弹性地震周期模型的计算成本。对于计算密集型黏弹性代码,须在数以千计的时间和位置点上进行评估。因此,研究趋向于采用几个固定的流变结构和模型几何结构,考查所预测的大震后短时间(小于10年)内给定深度处不同时间的形变。训练一个深层神经网络来学习黏弹性解在任意时间、位置和大范围流变结构计算效率的表示,可快速且可靠地完成计算,并具有较高时空分辨率。结果表明,该机器学习方法可以将黏弹性计算速度提高50 000%以上。这种加速量级将使得在更大的模型参数范围内、在比以前更大的时空尺度上和数千个地震周期内,模拟几何结构复杂的断层成为可能。

  • 单位
    新疆维吾尔自治区地震局

全文