在使用累积式自回归移动平均法(ARIMA)进行中期电力负荷预测时,所得残差序列具有明显规律。电力负荷数据可使用线性和非线性成分叠加表示,为弥补传统ARIMA时间序列预测法忽略非线性的缺陷,引入LIBSVM支持向量机挖掘数据残差非线性规律,并将LIBSVM预测残差与ARIMA预测结果相叠加,达到更高的精度。使用ARIMA-LIBSVM组合模型进行实例预测,结果表明:该模型能够提高预测精度。