摘要

解决微网中新能源出力的随机性与波动性是微电网优化运行的前提和关键,为此,提出一种快速非支配排序遗传算法NSGA-Ⅱ (non-dominated sorting genetic algorithm)和基本粒子群优化算法PSO(particle swarm optimization)相结合的NSGA-Ⅱ-PSO算法,考虑将经济运行成本和环境污染成本作为优化的目标函数,建立常见发电单元以及蓄电池储能的多目标优化运行模型。通过Matlab仿真对比PSO、NSGA-Ⅱ和NSGA-Ⅱ-PSO算法的适应度收敛曲线,验证所提算法具有收敛速度快、全局和局部搜索能力强的优点,较单一的PSO算法和NSGA-Ⅱ算法具有更优的特点;结合经典微网系统进行算例仿真,通过对单目标与多目标的分析,结果表明该算法能有效降低经济成本和使环境效益达到最优;并且进一步验证所提算法的优越性。