摘要
隐式篇章关系识别是在缺少显式连接词的条件下,自动判定论元之间的语义关系。其挑战性在于现有训练数据的规模较小,其蕴含的语义多样性也相对有限。针对上述问题,该文利用掩码语言模型架构建立篇章关系分类模型。其动因包括:(1)掩码语言模型在自监督学习过程中具备局部的语言生成能力,即在理解上下文语义的基础上“重构掩码区域语义表示”的能力;(2)掩码重构形成了数据增强(潜在的自动数据扩展)的效果,有助于提高篇章关系分类模型的鲁棒性。特别地,该文提出一种基于交互注意力的掩码语言模型,该方法计算论元之间的交互注意力矩阵,并依赖交互注意力动态选择论元之间高关联性的关键词项进行遮蔽、掩码重构,从而形成更有针对性的数据增强(非关键信息的数据增强对关系分类影响不大)。该文利用宾州篇章树库语料进行实验。实验结果表明,相较于基准系统,我们提出的方法的F1值在四大类关系(对比关系、偶然性关系、扩展关系和时序关系)上分别提高了3.21%、6.46%、2.74%和6.56%。
- 单位