摘要
在高分辨率网络(HRNet)的基础上,提出一种融合Ghost卷积的轻量型高分辨率网络(GLHRNet)。首先使用Ghost卷积模块和极化自注意力(PSA)模块在HRNet中构建新的残差块结构,新的残差块结构可以在减少网络模型参数量和计算量的同时,建模高分辨率图像的长距离依赖关系。接着在新网络模型中引入IBN-Net的设计思想,在新网络模型的浅层同时使用批量归一化和实例归一化,为网络模型引入外观不变性,减小光照变化问题对模型的影响。算法在COCO人体姿态估计数据集上的实验结果表明,与HRNet相比新网络模型的参数量降低了36.1%,计算量降低了35.2%,人体姿态估计的平均准确率提高了1.4个百分点。