摘要
在解决行人再识别技术中的姿态变化、遮挡、背景等问题时,为了提高遮挡下的行人再识别性能,提出一种基于注意力机制和姿态识别的行人再识别方法。采用全局注意网络和姿态识别网络分别提取行人图像的全局特征、关节点位置热力图和对应的置信度,通过计算得到行人13个关节点和融合所有关节点的局部特征,对全局特征和14个局部特征分别进行行人分类训练,利用多任务学习多个损失共同监督网络的优化。测试时,将关键点特征和全局特征融合后,计算行人的距离排序。在Market1501和DukeMTMC-reID数据集上测试的Rank-1/mAP指标分别达到了85.1%/75.6%和64.3%/55.3%。结果表明,所设计方法具备抗姿态变化、遮挡和背景的能力,同时具有较高的识别能力和识别精度。
- 单位