摘要
针对造纸废水处理过程的复杂特性,本课题将主成分分析(PCA)与人工神经网络(ANN)和支持向量回归(SVR)相结合,构建出两种新的软测量模型:主成分分析-人工神经网络(PCA-ANN)和主成分分析-支持向量回归(PCA-SVR)。本课题将这两种软测量模型应用于造纸废水处理过程中出水化学需氧量(COD)和出水悬浮固形物(SS)浓度的预测。计算结果表明,PCA-ANN和PCA-SVR的预测效果均优于偏最小二乘、支持向量回归和人工神经网络3种常规软测量模型,并且PCA-ANN的预测效果最优。对于出水COD浓度预测,PCA-ANN的决定系数(R2)为0.984,均方误差(MSE)为1.892,较ANN...
- 单位