摘要

目的基于全卷积网络(FCN)模型的显著性检测(SOD)的研究认为,更大的解码网络能实现比小网络更好的检测效果,导致解码阶段参数量庞大。视觉注意力机制一定程度上缓解了模型过大的问题。本文将注意力机制分为强、弱注意力两种:强注意力能为解码提供更强的先验,但风险很大;相反,弱注意力机制风险更小,但提供的先验较弱;基于此提出并验证了采用弱注意力的小型网络架构也能达到大网络的检测精度这一观点。方法本文设计了全局显著性预测和基于弱注意力机制的边缘优化两个阶段,其核心是提出的密集弱注意力模块。它弥补了弱注意力的缺点,仅需少量额外参数,就能提供不弱于强注意力的先验信息。结果相同的实验环境下,提出的模型在5个数据集上取得了总体上更好的检测效果。同时,提出的方法将参数量控制在69. 5 MB,检测速度达到了实时32帧/s。实验结果表明,与使用强注意力的检测方法相比,提出的密集弱注意力模块使得检测模型的泛化能力更好。结论本文目标是使用弱注意力机制来提高检测效能,为此设计了兼顾效率和风险的弱注意力模块。弱注意力机制可以提高解码特征的效率,从而压缩模型大小和加快检测速度,并在现有测试集上体现出更好的泛化能力。

  • 单位
    中国人民解放军陆军工程大学