摘要
许多真实世界的数据集都存在一个称为类不平衡问题的问题。传统的分类算法在对不平衡数据进行分类时,容易导致少数类被错分。为了提高少数类样本的分类准确度,提出了一种基于固定半径最近邻的逐步竞争算法(FRNNPC),通过固定半径邻(FRNN)对数据集进行预处理,在全局范围内消除不必要的数据,在得到的候选数据中使用逐步竞争算法(NPC),即逐渐计算查询样本邻近样本的分值,直到一个类的分值总和高于另一个类。简而言之,该方法能够有效地处理不平衡问题,而且不需要任何手动设置的参数。实验结果将所提出的方法与4种代表性算法在10个不平衡数据集上进行了比较,并验证了该算法的有效性。
- 单位