摘要

本文提出了一种基于生成对抗网络(GAN)从人脸转正过程中学习表情特征的多任务学习方法,将输入的任意角度侧脸映射为保留了表情与个体特征的正脸图像,从而减少角度对识别的影响。同时,改进了网络结构并对损失函数进行了优化,使学习到的特征更具生成与判别能力,实验结果表明,该方法在Multi-PIE数据集上表现出较好的表情识别性能。