摘要

针对基于深度学习的调制识别算法在仅有几个带标签信号样本时无法训练的问题,通过模型无关元学习算法提高网络的泛化性能,以使网络对仅有几个训练样本的待测信号实现准确识别。同时对深度神经网络进行预训练以降低元学习阶段网络的训练难度,并根据迁移学习思想,通过引入可学习的缩放偏移参数来迁移预训练所得网络参数,减少学习新类信号所需训练的网络参数量,当面对新类信号的识别任务时通过少量信号样本微调网络就能实现准确识别。实验结果表明,算法在新类信号训练样本仅有5个时最高可实现93.5%的识别准确率。

  • 单位
    空军工程大学信息与导航学院