摘要

为探究卷积层深度对猕猴桃树干图像特征提取的影响,提出了一种分析所提取特征的可视化方法。首先,对所采集建立的数据集进行正负样本分类,将数据集中的树干与输水管交叉区域作为正样本,其余区域作为负样本,输入Le Net、Alexnet、Vgg-16以及定义的3类浅层模型进行训练;然后,通过提取激活映射图、归一化、双三次插值的可视化方法,获取各个分类模型最后一个卷积层的可视化结果,通过可视化试验对比可知,Alexnet和Vgg-16能够准确提取测试集图像中的树干区域特征,而Le Net与3类浅层模型在提取树干的同时将输水管、地垄等区域特征一并提取;最后,以上述6类网络结构作为特征提取层的图像分类和目标检测模型,对开花期和结果期的数据集进行验证,以不同季节数据集特征变化而引起的精度下降幅度作为评判标准,结果显示,图像分类浅层模型精度下降幅度不小于15. 90个百分点、Alexnet与Vgg-16分别下降6. 94个百分点和2. 08个百分点,目标检测浅层模型精度下降幅度不小于49. 77个百分点、Alexnet和Vgg-16分别下降22. 53个百分点和20. 54个百分点。所有浅层模型因所提取特征的改变,精度有更大幅度的下降。该方法从可视化角度解释深层网络与浅层网络对猕猴桃树干目标特征的提取差异,可为研究网络深度和训练样本的调整提供参考。