摘要

为实现食用植物油中饱和脂肪酸、油酸、亚油酸含量的快速预测,对一批纯食用油以及不同比例两两混合油共91个样品进行了拉曼光谱检测,在800~2 000cm-1范围内,通过基于寻峰算法的自动确定支点的基线拟合方法,对获得的光谱数据进行预处理,提取八个特征峰作为拉曼光谱的特征值。以这些特征值为输入,以样品油中实际饱和脂肪酸、油酸、亚油酸含量为输出,运用偏最小二乘回归(PLS)和多输出最小二乘支持向量回归机(MLS-SVR)方法,分别建立了可以同时预测三种脂肪酸含量的数学模型,结果表明MLS-SVR方法具有较好的效果。将MLS-SVR模型的预测结果与气相色谱法结果相比较,可得到三种脂肪酸的预测均方根误差分别为0.496 7%,0.840 0%和1.019 9%,相关系数分别为0.813 3,0.999 2和0.998 1;对未知样品三种脂肪酸的预测均方根误差不超过5%。表明,拉曼光谱和MLS-SVR相结合的食用油脂肪酸含量预测方法,具有快速、简便、无损、准确等优点,为食用油脂肪酸含量分析提供了一种可行的方法。

  • 单位
    浙江大学; 现代光学仪器国家重点实验室