摘要

汉语方言分区研究是语言学的重要组成部分。鉴于传统基于词汇和语法的人工方言分区方法具有一定的主观性,该文研究了如何有效利用语音本身特征进行方言的自动分区。论文首先构建了江西省11个省辖市、91个下辖县级行政区的时长约1 500分钟的1 223条语音语料库,然后在传统的MFCC语音特征提取基础上,提出了基于CNN的自编码降维语谱图的深度学习特征提取模型,对降维后的语音特征分别采用k均值算法聚类、高斯混合聚类和层次聚类对方言自动分区。实验结果表明,新型语谱图特征的聚类性能度量内部指标DBI指数以及DI指数显著优于传统MFCC特征,维度为16时语谱图和MFCC下的拼接特征聚类效果与传统人工方言分区较为接近。