摘要

[目的/意义]为了帮助情报学学科背景的就业人员掌握市场对情报学人才的具体需要,为情报学的教育者拟定情报学的教育体系和人才培养的目标提供指导。[方法/过程]采集国内各大招聘网站情报学相关职位招聘公告,构建情报学招聘语料库,基于CRF机器学习模型和Bi-LSTM-CRF、BERT、BERT-Bi-LSTM-CRF深度学习模型,从语料库中抽取5类情报学招聘实体进行挖掘分析。[结果/结论]通过在已有2000篇经过标注的职位招聘公告语料库上开展情报学招聘实体自动抽取对比实验,识别效果最佳的CRF模型的整体F值为85.07%,其中对"专业要求"实体的识别F值达到了91.67%。BERT模型在"专业要求"实体识别任务中更是取得了92.10%的F值。使用CRF模型对全部符合要求的5287篇招聘公告进行实体抽取,构建了情报学招聘实体社会网络,并通过信息计量分析与社会网络分析的方式挖掘隐含知识。

全文