本文旨在分析驾驶行为多重分形特征对驾驶疲劳检测模型的提升作用。利用UCwin/Road驾驶模拟软件采集行驶速度、加速度、方向盘转角和方向盘角速度等数据,并计算数据的均值、标准差和多重分形特征,比较不同特征的使用是否会对支持向量机(SVM)驾驶疲劳检测模型的精度造成影响。研究表明:在多重分形特征指标中,加速度的奇异强度与驾驶员疲劳状态相关性显著,且受时间窗宽度影响较小;加速度的奇异强度能帮助提高驾驶疲劳检测模型的精度,具有一定的应用价值。