摘要

近年来,随着网络用户量的不断增加,用户评论数量也呈爆炸式增长,伴随而来的是大量可用于参考和深度挖掘的信息,文本情感分类应运而生。分类模型的预测精度和执行速度是衡量模型优劣的关键。使用传统的SVM进行文本情感分类,算法简单,易于实现,但其模型参数决定了分类准确率。针对这种情况,文中将改进粒子群优化算法与SVM分类方法相结合,采用了改进粒子群算法优化的SVM方法对影视剧评论的情感进行了研究分析。首先,通过网络爬虫获取豆瓣电影评论数据,将数据预处理后利用加权word2vec向量化文本信息,将其作为支持向量机可识别的输入;然后,使用自适应惯性递减策略并引入交叉算子来改进粒子群算法,并对SVM模型的损失函数、惩罚参数及核函数的参数进行优化;最后,实现文本的情感分类。在同一数据集上的实验结果表明,所提方法有效规避了传统的情感词典方法受词语顺序和不同语境影响的缺陷及使用卷积出现梯度消失或弥散的问题,同时也克服了粒子群算法易陷入局部最优的不足。相较于其他方法,所提分类模型的执行速度更快,有效地提高了分类准确率。