摘要

为提高采用单神经网络方法的变压器故障诊断精度,该文提出了一种基于改进神经网络与比值法融合的变压器故障诊断方法。针对深层1维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)难以适应变压器溶解气体数据的难题,搭建了改进的1D-CNN作为融合分类方法的基础分类器;为提升神经网络在变压器故障诊断中的应用性能,提出了一种融合分类模块(fusion classificationmodule,FCM),提前筛选出可能被网络错误分类的样本并转由传统比值法进行单条数据分析;并用算例仿真验证了所提方法的可操作性和适应性。研究结果表明:与常规1维卷积神经网络、循环神经网络相比,改进的1D-CNN作为基础分类器的性能表现优异;FCM在不同数据集下对基础分类器均有相应的性能提升,对于初始准确率高于95%的基础分类器提升效果更稳定。

全文