摘要
知识库问答(KBQA)是指利用知识库中的一个或多个知识三元组回答一个自然语言问题,需要检测问题中提及的知识库实体和关系.关系检测是知识库问答的核心.为了解决现有关系检测方法存在的匹配视角单一和信息瓶颈问题,本文提出了一种多视角层次匹配网络(M-HMN,Multi-view Hierarchical Matching Network),M-HMN利用双向注意力机制对齐问题与候选关系的不同特征,强化两者匹配部分的观察精细度,将匹配信息封装成向量,再由自注意力机制有效聚合多个向量以进行正确关系检测.对于KBQA最终任务的评估,本文提出一种简易的实体重排序算法,利用M-HMN网络优化候选实体集.实验结果表明,M-HMN能有效缓解关系检测的信息瓶颈问题,而提出的实体重排序算法能够进行实体消歧,获得更小更为精准的候选实体集,对KBQA最终任务性能有显著的提升.
- 单位