摘要
动态时间弯曲距离能度量不等长的时间序列、且具有较高的匹配精度,因此广泛应用在时间序列模式匹配中。但其计算复杂度较高,制约了在大规模数据集上的应用。为了实现时间序列模式度量结果和计算复杂度的平衡,提出一种基于特征点界标过滤的时间序列模式匹配方法。首先,提出一种特征点界标过滤的特征提取方法,保留时间序列主要特征,压缩时间维度;然后,利用动态时间弯曲距离对特征序列进行相似性度量;最后,在应用数据集上对所提方法进行有效性验证。实验结果表明,所提方法在保证高精度的前提下,能有效降低计算复杂度。
-
单位空军工程大学