摘要
针对网络流量数据具有空间和时间的双重特征,提出了一种基于深度学习的入侵检测模型。首先,通过二分支卷积神经网络提取网络流量数据的空间特征,利用其分支结构的特点使得不同的卷积层对同一个数据样本进行粗化提取和细化提取,既保留了数据的总体特征,又从低级特征中迭代提取出更复杂的特征;然后,利用门控循环单元网络顺序敏感性的优势,挖掘网络流量数据的时序特征;最后,使用KDDCUP99数据集对入侵检测模型进行训练、验证和测试。实验结果表明,与传统的基于机器学习的模型相比,该模型具有更高的检测准确率。
- 单位