摘要

作为一种重要的海上作业装备,船用起重机被广泛应用于海洋工程的各类场景中.然而,船用起重机是一类复杂的非线性欠驱动系统,存在摩擦、未建模动态等干扰,为控制器设计带来了巨大挑战.更糟糕的是,船用起重机还面临海浪、大风等未知干扰的影响,使得实际控制更加困难.如何稳定高效地控制该类系统,目前仍处于初步探索阶段.为了解决上述问题,本文提出了一种基于迭代学习和神经网络的控制方法.具体来说,首先将未知干扰分为周期与非周期两部分.对于周期干扰,利用周期估计器解决了对未知周期的估计问题,在此基础上通过迭代学习对干扰进行补偿;对于非周期干扰,使用双层神经网络进行逼近和补偿,并设计了权重的更新律;在补偿未知干扰后,基于反馈线性化设计了控制输入.通过Lyapunov分析方法,可以证明期望平衡点是全局有界的.最后,在所搭建的船吊实验平台上进行了大量实验,充分验证了所设计控制方法的有效性与鲁棒性.