摘要
采用5个标准测试函数对多组群教学优化(MGTLO)算法进行仿真验证,并将仿真结果与基本教学优化(TLBO)算法、混合蛙跳算法(SFLA)、差分进化(DE)算法和粒子群优化(PSO)算法的仿真结果进行对比。利用MGTLO算法搜寻基于广义回归神经网络(GRNN)、径向基神经网络(RBF)、支持向量机(SVM)模型单元的组合模型的最佳模型参数和组合权重系数,提出MGTLO-GRNN-RBF、MGTLO-GRNN-SVM、MGTLO-RBF-SVM、MGTLO-GRNN-RBF-SVM 4种组合预测模型,以新疆伊犁河雅马渡水文站和云南省某水文站年径流量预测为例进行了实例分析,并将预测结果与MGTLO-GRNN、MGTLO-RBF、MGTLO-SVM和GRNN、RBF、SVM 6种单一模型的结果进行对比分析。结果表明:MGTLO算法寻优精度优于TLBO、SFLA、DE和PSO算法,具有较好的收敛速度和全局极值寻优能力;组合模型融合了MGTLO算法与GRNN、RBF、SVM模型单元的优点,在预测精度、泛化能力等方面均优于单一模型;MGTLO算法能有效优化各组合模型的相关参数和权重系数,MGTLO-GRNN-RBF-SVM模型预测精度最高。