提出了变系数模型条件分位估计的一种新方法.变系数模型已经成为经济学、流行病学、纵向数据和医学领域处理高维数据的有力工具.该模型有助于探测数据的动态特征、降低模型偏差、避免高维灾难,同时便于解释.尽管关于变系数模型条件均值的估计已经有很多文章,但关于变系数模型条件分位的估计方面的文章相对较少.文中提出了一种有效的适应性分位回归方法来诊断出齐性邻域,进行局部自适应窗宽选择和局部线性逼近,同时给出了估计量的风险界和最优窗宽的自动选择准则.模拟研究说明了所提出估计方法的效果.