摘要
天然裂缝是基岩潜山油藏油气存储及运输的重要场所,而裂缝开度是表征潜山油藏储层品质、油气储量及产能评价的关键参数。为此,提出一种基于集成学习算法的新型裂缝开度预测算法。以B盆地中非乍得某基岩潜山油藏岩心描述、关键井成像测井、裂缝参数解释获取开度数据,以相同深度测井数据作为特征变量构成学习样本。利用K均值聚类算法对学习样本进行降噪,剔除异常数据,以支持向量机回归和XGBoost回归算法为基础模型,再利用随机搜索进行参数优化,通过岭回归算法对基础模型进行集成组合,再进行裂缝开度预测。结果表明所提出的新型集成学习算法比基础模型性能有明显提升。测试集样本预测值与实际值均方根误差为0.047,相关系数达0.931。该算法弥补了单一回归算法不稳定的特点,提高了泛化能力,为裂缝开度预测提供了新思路。
-
单位中国石油大学(华东); 中国石油勘探开发研究院