为了提高分布估计算法的性能,提出一种从选择方式和搜索机制出发的改进分布估计算法。首先,借鉴并改进粒子群种群更新策略,在构造优势群体时,引入精英选择策略替换经典的截断选择,提高算法向全局最优解的收敛速度;然后,引入二次反向反射搜索算子,从搜索机制上对分布估计算法进行改进,提高算法的全局搜索能力。仿真结果表明,所提出的改进分布估计算法能够有效的避免陷入局部最优值,在寻优精度、收敛速度以及算法的稳定性和鲁棒性上都有极大改善。