摘要

针对传统BP神经网络在双目相机标定过程中存在的迭代时间长、精度低等问题,提出了基于改进遗传算法优化BP神经网络的方法来完成双目相机标定。使用融合多格算法的Trajkovic算子进行角点检测,利用点对点空间映射和网格运动统计相结合的方法完成同名角点匹配,在此基础上,提取同名角点的像素值并计算其实际的三维坐标值。对遗传算法的交叉和变异概率及选择算子进行改进,利用改进后的遗传算法对BP神经网络进行优化,将像素值和三维坐标值分别作为BP神经网络的输入和输出,进而完成双目相机的标定。实验结果表明:优化前后的平均标定预测精度分别为0.66 mm和0.08 mm,其平均标定预测精度提高了88%。优化前后的标定测试迭代次数分别为736和169,优化后迭代速度提高了3.4倍。改进遗传算法优化BP网络在双目相机标定过程中取得较好的效果,满足了双目相机标定的要求。

  • 单位
    机电工程学院; 苏州大学; 苏州大学附属第一医院