针对粒子群算法中加速系数的取值问题,对C1和C2的各种取值策略做了充分调查分析,得到参数C1和C2对算法性能的影响规律,并提出了一种基于随机加速系数的粒子群优化算法.该算法在迭代的每一代中,加速系数取一定范围内随机产生的一组C1和C2的组合,通过非对称的、范围更大的C1和C2取值来增加算法的多样性,避免了算法早熟.在典型测试函数上进行对比实验,结果验证了新算法在优化性能和稳定性上高于传统粒子群优化算法.