摘要

高效、高精度的气动热预示是高超声速飞行器设计的关键。然而,随着高超声速飞行器外形的日益复杂化和设计周期的不断缩紧,现有方法已很难满足高效精准的气动热预示。本文基于边界层理论和支持向量机发展了一种数据驱动的当地化气动热预示建模方法。首先,通过求解Euler方程获得边界层外缘信息,采用RANS方法计算热流分布样本;然后,通过设计的特征选择方法确定边界层外缘特征;最后,利用支持向量机构建气动热预示模型,实现边界层外缘特征与壁面热流的映射。对双椭球和二级压缩面的热流预示结果表明,该模型考虑了非均匀分布壁面温度等边界条件,具有较高的预示精度和良好的外推与泛化性能,典型位置热流预示结果和RANS计算结果的相对误差均小于5%。同时,以双椭球上表面中心线热流预示为例,对比传统POD降阶方法,发现该模型的预示精度更高,外推状态下预示精度较POD方法提升了4倍以上。