摘要

磁巴克豪森噪声(Magnetic Barkhausen Noise, MBN)技术可用于定量评估铁磁材料的表面应力。当前MBN法应力评估技术存在特征量选取较难、定量预测模型复杂且对标定数据集的拟合精度较低的不足。本文提出一种数据驱动的非线性映射算法拟合MBN噪声和应力的关系,研究了基于小波包变换系数的时频特征替代统计特征量,减少了样本数据计算量。采用MBN噪声在小波包变换时-频域内的小波包变换系数作为特征向量,利用基于奇异值分解的数据降维算法降低特征向量的维数,将经过数据降维后的特征向量输入BP神经网络进行模型训练以建立预测模型。结果表明:采用基于奇异值分解的数据降维算法可减小模型的复杂度,利用降维后的小波包变换系数特征向量训练BP神经网络可实现铁磁材料表面应力的高精度预测。本文建立的表征方法有效解决了铁磁构件应力分布成像问题,在预防应力腐蚀、提高疲劳强度等损伤预警方面具有广阔的应用前景。