摘要
针对水文模型参数的不确定性,对洪水进行分类预报,不同类型洪水采用不同预报参数,旨在提高洪水预报精度。基于BP神经网络模型,依据分类因子选取原则,选取6项具有代表性的影响因子作为模型输入,可将洪水划分成高、中、低3类。基于遗传算法,对3类洪水进行参数率定,获得3组不同的参数组,最终利用训练好的分类预报模型实现不同类型洪水的变参数预报。以大伙房水库25场历史典型洪水进行实例验证与分析,结果表明:分类预报结果的洪峰误差、峰现误差、确定性系数及典型洪水过程的拟合效果明显优于分类前。经训练后的基于BP神经网络与遗传算法的洪水分类预报模型可较好适用于大伙房水库,结果更贴合实测值,效果整体上优于分类前,方法可行、有效。
-
单位辽宁省水利水电科学研究院