摘要

在超分辨率图像重建(SR)模型中,为了达到良好的重建效果,选择一个合适的代价函数是研究的重点。采用SR重建模型中的差错项选择了洛伦兹范数,正则化项选择了吉洪诺夫正则化,重建过程采用了迭代方法。提出的算法可以有效地解决医学图像SR重建过程中的去异值点和图像边缘保持的两大关键问题,达到良好的重建效果。为了验证上述算法的有效性,就一系列添加了运动模糊和不同噪声的低分辨率MRI医学图像进行了SR重建,并且与基于L2范数的重建算法的重建效果进行了比较分析。实验结果显示,所提算法具有良好的实用性和有效性。