摘要
自体肋软骨雕刻法是目前治疗先天性小儿畸形的临床标准疗法,而耳软骨组织工程和3D生物打印是有前景的治疗方案。可是,这些治疗方案的核心—(复合物)支架构造缺乏基于医学图像的耳软骨自动分割方法。基于3D U-Net提出改进的网络模型,能够实现MRI图像的人体耳软骨解剖结构的自动分割。该网络模型结合残差结构和多尺度融合等设计,在减少网络参数量的同时实现12个耳软骨解剖结构的精确分割。首先,使用超短回波时间(UTE)序列采集40名志愿者单侧外耳的MRI图像;然后,对所采集的图像进行预处理、耳软骨和多解剖结构手动标注;接下来,划分数据集训练改进的3D U-Net模型,其中32例数据作为训练集、4例为验证集、4例为测试集;最后,使用三维全连接条件随机场对网络输出结果进行后处理。模型经过10折交叉验证后,耳软骨12个解剖结构的自动分割结果的平均Dice相似度系数(DSC)和平均95%豪斯多夫距离(HD95)分别为0.818和1.917,相比于使用基础的3D U-Net模型,DSC指标分别提高6.0%,HD95指标降低了3.186,其中耳软骨关键结构耳轮和对耳轮的DSC指标达到了0.907和0.901。实验结果表明,所提出的深度学习方法与专家手动标注两者之间的结果非常接近。在临床应用中,根据患者健侧UTE核磁图像,本研究提出的方法既可以为现有自体肋软骨雕刻法快速、自动生成三维个性化雕刻模板,也可以为组织工程或者3D生物打印技术构建耳软骨复合物支架提供高质量的可打印模型。
-
单位北京协和医学院; 中国医学科学院基础医学研究所; 医学分子生物学国家重点实验室