深度学习陶瓷表面缺陷检测算法研究

作者:丁伟利*; 张志鹏; 雷子琦; 孙朴
来源:电子测量与仪器学报, 2023, 37(11): 161-169.
DOI:10.13382/j.jemi.B2306487

摘要

传统的陶瓷缺陷检测主要依赖人工目测或放大镜观察,为解决检测效率低、结果主观性强等问题,提出了一种基于深度学习的陶瓷表面缺陷检测算法,针对于陶瓷杯表面的缺陷具体情况,在YOLOv5目标检测模型的基础上,增加小目标检测层,同时使用位置注意力机制进行特征重构提高检测的精确度,实现了高精度的缺陷检测。针对实际生产中的陶瓷双层杯进行数据采集训练,并对于每批数据进行推理,最终平均检测精度达到了95.4%。本文所改进的YOLOv5缺陷检测模型拥有更高的准确率、识别速度快等优点,可以极大地减少陶瓷质检减少人力物力的损耗与时间成本。

全文