摘要

针对SDN网络中控制器容易受到DDoS攻击导致CPU资源耗尽的问题,提出一种基于机器学习的SDN异常流量检测架构。根据DDoS攻击在通信、频率等方面的特性从流表中提取相关联的七维特征,使用互信息法筛选出四维最优特征子集,结合集成投票算法检测异常流量,利用SDN转控分离的独特性质提出多目标流路由方案,为正常流量分配高带宽、低延迟的优化路径。实验结果表明,提出架构能及时准确检测到DDoS攻击,集成投票算法在时间开销和CPU平均利用率方面有较好改善。

全文