摘要
现有的基于矩阵分解聚类模型训练过程大多需要两个独立的步骤,一是通过自身的模型对数据集进行训练获得系数矩阵,二是对得到的系数矩阵进一步使用K-means方法来获得最终的聚类结果.这种两阶段模式一方面增加了计算消耗,也会因为K-means对初始聚类中心的敏感,会对聚类效果产生一定的影响.针对此问题,本文提出了一种图正则化的模糊局部坐标编码概念分解模型.该模型通过对系数矩阵添加约束使得系数矩阵行和为1,从而避免了再次使用K-means方法进行二次训练,而直接由系数矩阵获得聚类结果.另外,由于此系数矩阵的约束.该模型实现了模糊聚类,增强了聚类结果的可解释性.本文通过对人工合成数据的测试,验证了该模型的模糊性与可解释性;同时在常用的标准数据集上,通过与现有的聚类方法相比较,同样获得了较好的聚类效果.
- 单位