摘要

电池健康状态SOH(state-of-health)和荷电状态SOC(state-of-charge)估计是电池管理系统的核心功能。目前,状态估计存在依赖大量历史数据以及单一状态估计适应性差的问题,因此提出一种基于DeepAR与特征选择的锂离子电池状态估计模型。首先,提取电池恒流充电过程中电压、温度及时间间隔数据,组成3组老化特征作为模型输入,用于估计SOH;然后,在估计SOC时考虑SOH估计值,消除了电池老化因素对SOC估算的负面影响;最后,在不同工况下的牛津电池数据集上进行实验验证,并与其他两种算法模型进行误差与收敛性对比。结果表明,所提模型在冷启动估计方面具有较强的优势,SOH和SOC估计精度较高。