摘要
研究了压缩感知理论中一种改进的迭代硬阈值稀疏信号重构算法。针对现有IHT算法类最优秀的BIHT算法中回溯操作无法保证稀疏信号重构误差递减的问题,对稀疏重构误差及其差值进行了简单介绍和分析,提出了一种能够保证重构误差随迭代进行单调减小的重构算法,在每次迭代的回溯操作中选择能够保证重构误差逐渐减小的原子,并将其指标与估计支撑集合并,最后基于最小二乘法进行伪逆运算获取稀疏信号估计。对高斯稀疏信号和0-1稀疏信号进行了仿真,证明了优于IHT、NIHT以及BIHT算法的稀疏信号重构性能。
- 单位
研究了压缩感知理论中一种改进的迭代硬阈值稀疏信号重构算法。针对现有IHT算法类最优秀的BIHT算法中回溯操作无法保证稀疏信号重构误差递减的问题,对稀疏重构误差及其差值进行了简单介绍和分析,提出了一种能够保证重构误差随迭代进行单调减小的重构算法,在每次迭代的回溯操作中选择能够保证重构误差逐渐减小的原子,并将其指标与估计支撑集合并,最后基于最小二乘法进行伪逆运算获取稀疏信号估计。对高斯稀疏信号和0-1稀疏信号进行了仿真,证明了优于IHT、NIHT以及BIHT算法的稀疏信号重构性能。