摘要
针对社交网络服务中传统个性化推荐系统的推荐性能和满意度低的问题,在分析社交网络服务中影响个性化推荐各种因素的基础上,引入社交网络用户关系亲密度度量方式——友情度及其三要素,并给出它们的计算方法。研究大型社交数据的用户主题兴趣和各类相似度,设计了一种基于友情度的个性化推荐系统,以提高社交大数据复杂环境下推荐精度及质量,提高用户对推荐结果的满意度。通过实验分析证实了所提出个性化推荐系统比基于PCC和JMSD算法等传统推荐系统的性能更优越,且推荐结果质量要高。最后给出了未来的研究方向。
- 单位