摘要
理解地理空间位置的空间相关性,对于地理信息检索、推荐系统,城市交通管理,居民出行模式探究等应用研究具有重要支撑作用.为更具体表义空间位置及其关联关系,本文基于多种居民出行轨迹数据,提出一种基于深度学习的空间位置向量化表示方法,而后通过空间位置向量的向量运算,可计算得到空间位置的关联程度.首先将长、短距离出行轨迹进行匹配连接,构建大规模交通网络,覆盖多种出行模式,得到对不同位置间空间关联信息的完整识别.然后基于图神经网络模型,本文提出融合位置特征与轨迹信息的空间向量化表示方法,并优化其训练学习中节点采样方法,提高空间向量的表达能力.最后以北京市共享单车轨迹数据与公共交通路网数据进行实证分析,实验结果表明基于本文提出方法生成的空间向量在空间位置的关联分析、聚类分析中相比DeepMove等已有方法拥有更好的效果.
-
单位北京市新技术应用研究所; 中国科学院计算机网络信息中心; 北京市科学技术研究院; 中国科学院大学