摘要
针对水下图像颜色失真、关键信息模糊和细节特征丢失的问题,提出一种基于SK注意力残差网络的水下图像增强方法.该方法通过改进生成对抗网络中的生成器结构,引入残差模块,减少编码器和解码器之间的特征丢失,增强了图像细节和颜色.为了使网络能适应不同尺度的特征图提取图像关键信息,该方法在残差模块后添加SK注意力机制,采用参数修正线性单元来提高网络的拟合能力.将本文方法分别在真实和合成的水下图像数据集中进行验证,采用传统方法和深度学习的方法进行主客观评价.在主观效果分析中发现,本文方法增强后的图像颜色、关键信息和细节特征都有很大提升.在客观评价指标中发现,本文方法指标值均高于现有的水下图像增强算法,验证了该算法的有效性.
-
单位自动化学院; 南京信息工程大学