摘要
为提高电力电容器组故障诊断的精度,针对支持向量机(Support Vector Machine,SVM)预测结果易受惩罚因子c和核函数参数g参数选择的影响,为避免杜鹃搜索算法陷入局部最优,将自适应步长和最优解高斯变异引入杜鹃搜索算法,提出一种改进的杜鹃搜索算法优化支持向量机的10kV并联电容器组故障诊断和识别模型,实现10kV并联电容器组故障的高精度诊断和识别。实验结果表明,与GASVM、PSOSVM和CSASVM相比,提出的算法ICSASVM可以有效提高电容器组故障诊断的准确率,具有收敛速度快的优点,为电容器组的诊断和识别提供新的方法和途径。
- 单位