摘要

实时多目标跟踪算法取得了理想的跟踪性能,但大多数现有算法的跟踪速度较慢,且随着背景复杂度的增加,跟踪精度也随之降低。针对此问题,本文提出了基于在线数据关联的行人实时跟踪算法。首先,设计了核相关滤波和卡尔曼滤波双轨道预测机制,配合DeepSORT中的级联匹配形成了预测-跟踪-校准体系,使数据关联更加可靠。此外,在目标检测部分引入了注意力机制,通过强化目标对象的位置信息增强特征表示能力,从而提升跟踪的精度。该模型在MOT16数据集上的MOTA达到了66.5%、IDF1达到了64.2%、IDSW达到了641。与DeepSORT算法对比,MOTA和IDF1分别提升了13%和13.2%,IDSW下降了410。本文算法有助于解决行人实时跟踪时出现的目标误检、漏检等问题,在跟踪中对严重遮挡情况仍保持了较高的跟踪精度,在复杂环境下可以实现行人实时稳定跟踪。