摘要

多粒度级联轻型梯度提升机(MGS-LGBM)具有超参数设置简单、模型泛化能力强、分类准确率高、训练评估快等特点。为提高电力系统暂态稳定评估的准确性和快速性,将MGS-LGBM引入电力系统暂态评估中。首先通过时域仿真提取原始数据,构造能够反映系统稳定情况的23维特征量,输入MGS-LGBM模型中,稳定结果作为输出量,利用模型中的多粒度扫描和级联结构对样本特征和结果进行高效并行训练。通过新英格兰10机39节点系统仿真验证MGS-LGBM算法,通过与其它机器学习算法比较,算法在提高暂态评估准确率的同时兼顾快速性,且在含有无关特征和训练集较少的情况下仍能保持较好的评估性能。